
Optimization I

CS 4447 / CS 9545 – Stephen M. Watt
The University of Western Ontario

CS 4447 / CS 9545

Overview

• Machine independent optimizations. Purple Dragon book, Chapter 9.

• Things you might have heard about:

– “Peep hole” optimization
– Common sub-expression elimination
– Dead code elimination

• Things you might not have heard about:

– Flow graphs
– Data flow analysis
– Live variable analysis
– UD and DU chains
– Static Single Assignment
– Register allocation by graph coloring

The Main Sources of Optimization

• Removing unnecessary code/computation

– Global common sub-expressions

– Copy propagation (re-using assignments)

– Constant folding

– Dead code elimination

– Moving code out of loops

– Strength reduction (using simpler operations)

• Removing unused data

– Dead variable elimination

Peephole Optimization

• Examine the sequence of instructions for local improvements.

• Sliding window

• Replace sequence with shorter, faster, sequence
giving the same result

• Multiple passes

• Redundant instruction elimination

• Flow of control optimization (e.g. when going to a goto)

• Algebraic simplifications

• Use of machine idioms (e.g. doing arithmetic by effective
address computation)

Eliminating Redundant Instructions

• E.g. replace

LD a, R0
ST R0, a

with

LD a, R0

Eliminating Unreachable Code

• E.g.

If (debug == 1) goto L1
goto L2

L1: print debugging info
L2: stuff

becomes

if (debug != 1) goto L2
print debugging info

L2: stuff

Flow of Control Optimization

• E.g.

goto L1
…

L1: goto L2

becomes

goto L2
…

L1: goto L2

Algebraic Simplification

• Use identites to eliminate useless instructions

x = x + 0

x = x * 1

• Strength reduction

x = 4 * y => x = y<<2

Machine Idioms

• Use addressing modes to do real work.
E.g.

– Post increment or pre-decrement addressing

*r++ *--r

– Effective address calculation

R[B + I]

The Principal Optimizations in Aldor

• The usual, as outlined on the previous slide, PLUS:

• Procedure integration (inlining)

• Jump-flow optimization (optimizing generic iteration)

• Data structure elimination

• Environment merging

• Leaf function optimization

Flow Graphs

• Basic blocks

– One point of entry, one point of exit

– Exit may be multi-way,
e.g. if with fall-through, computed goto

• Directed graph with a basic block at each vertex.

• Each block has a (potentially empty) set of

predecessors and

successors.

